Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 271: 125683, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38301372

RESUMEN

This work describes the development of a microfluidic paper-based analytical device (µPAD) for the determination of copper in fresh and marine waters. A functionalized rhodamine-based chelator was synthesized and used as a chromogenic reagent, forming a highly intense pink complex with the analyte. The aim was to create a paper device that offers optimal performance and provides in-situ, rapid and cost-effective analysis in line with World Health Organization guidelines. The influence on the determination of several physical and chemical parameters was evaluated aiming to achieve the best performance. Under optimised conditions, a linear correlation was established in the range of 0.05-0.50 mg L-1 of copper, with a limit of detection of 10 µg L-1. The accuracy of the proposed method was assessed by comparing the results obtained with the developed µPAD and the results obtained with Inductively Coupled Plasma measurements (RE < 10 %). Recovery studies were also performed using different types of water samples with no need for any prior sample pre-treatment: tap, well, river and seawater. The average recovery percentage of 101 % (RSD = 4.3 %) was obtained, a clear indication of no multiplicative matrix interferences.

2.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36559942

RESUMEN

In this work new rosamine-silica composites were prepared and their sensing ability towards different amines was assessed. Rice husk wastes were used as a biogenic silica source. Silica was extracted by thermal treatment, before rice husk ash and after acid leaching with citric acid-treated rice husk ash. Mesoporous material (SBA-15) was also prepared using the extracted silica. The prepared materials were characterized by several techniques such as FTIR, XRD, SEM and N2 adsorption. The materials were then used as adsorbents of the chromophore N-methylpyridinium rosamine (Ros4PyMe). The obtained loaded composites were tested in solution for amines sensing (n-butylamine, aniline, putrescine and cadaverine). The detection studies were analyzed by fluorescence and revealed 40% and 48% quenching in fluorescence intensity for the composite Ros4PyMe@SBA in the presence of the biogenic amines cadaverine and putrescine, respectively. The composite was also sensitive in the powder form, changing the color from violet to pale pink in the presence of putrescine vapors with a fast response (around 2 min), the process being reversible by exposure to air.


Asunto(s)
Oryza , Cadaverina , Putrescina , Aminas Biogénicas , Dióxido de Silicio
3.
Front Chem ; 7: 756, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31799236

RESUMEN

The monolacunary Keggin-type [PW11O39]7- (PW11) heteropolyanion was immobilized on porous framework of mesoporous silicas, namely SBA-15 and an ethylene-bridged periodic mesoporous organosilica (PMOE). The supports were functionalized with a cationic group (N-trimethoxysilypropyl-N, N, N-trimethylammonium, TMA) for the successful anchoring of the anionic polyoxometalate. The PW11@TMA-SBA-15 and PW11@TMA-PMOE composites were evaluated as heterogeneous catalysts in the oxidative desulfurization of a model diesel. The PW11@TMA-SBA-15 catalyst showed a remarkable desulfurization performance by reaching ultra-low sulfur levels (<10 ppm) after only 60 min using either a biphasic extractive and catalytic oxidative desulfurization (ECODS) system (1:1 MeCN/diesel) or a solvent-free catalytic oxidative desulfurization (CODS) system. Furthermore, the mesoporous silica composite was able to be recycled for six consecutive cycles without any apparent loss of activity. The promising results have led to the application of the catalyst in the desulfurization of an untreated real diesel supplied by CEPSA (1,335 ppm S) using the biphasic system. The system has proved to be a highly efficient process by reaching desulfurization values higher than 90% for real diesel during three consecutive cycles.

4.
Materials (Basel) ; 12(18)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533221

RESUMEN

Porous metal-organic framework (MOF) materials UiO-66(Zr) obtained by solvothermal and microwave advanced synthesis (MWAS) procedures were characterized, and their catalytic efficiency was investigated for oxidative desulfurization (ODS) processes using a multicomponent model diesel containing benzothiophene and dibenzothiophene derivatives. The preparation parameters as the cooling time after oven use in the solvothermal procedure, and also the reaction time in the MWAS method seemed to play an important role in the catalytic performance of the UiO-66(Zr) material, as well as in its recycle capacity. The material prepared by the solvothermal procedure with a fast cooling time showed the best catalytic performance (desulfurization efficiency of 99.5% after 3 h). However, the application of the UiO-66(Zr) material prepared by the MWAS method (desulfurization efficiency of 96% after 3 h) conciliated a higher number of advantages, such as shorter reaction time preparation (15 min) and high catalytic activity for a higher number of reaction cycles. The UiO-66(Zr) prepared by the MWAS method was used for the first time in an oxidative desulfurization process, and according to the catalytic results obtained (high recycle capacity and stability) and shorter reaction time preparation, seems to be a promising material for industrial application.

5.
Materials (Basel) ; 11(7)2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002316

RESUMEN

Different methodologies were used to increase the oxidative desulfurization efficiency of the Keggin phosphotungstate [PW12O40]3- (PW12). One possibility was to replace the acid proton by three different ionic liquid cations, forming the novel hybrid polyoxometalates: [BMIM]3PW12 (BMIM as 1-butyl-3-methylimidazolium), [BPy]3PW12 (BPy as 1-butylpyridinium) and [HDPy]3PW12 (HDPy as hexadecylpyridinium. These hybrid Keggin compounds showed high oxidative desulfurization efficiency in the presence of [BMIM]PF6 solvent, achieving complete desulfurization of multicomponent model diesel (2000 ppm of S) after only 1 h, using a low excess of oxidant (H2O2/S = 8) at 70 °C. However, their stability and activity showed some weakness in continuous reused oxidative desulfurization cycles. An improvement of stability in continuous reused cycles was reached by the immobilization of the Keggin polyanion in a strategic positively-charged functionalized-SBA-15 support. The PW12@TM⁻SBA-15 composite (TM is the trimethylammonium functional group) presented similar oxidative desulfurization efficiency to the homogeneous IL⁻PW12 compounds, having the advantage of a high recycling capability in continuous cycles, increasing its activity from the first to the consecutive cycles. Therefore, the oxidative desulfurization system catalyzed by the Keggin-type composite has high performance under sustainable operational conditions, avoids waste production during recycling and allows catalyst recovery.

6.
Chem Commun (Camb) ; 51(72): 13818-21, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26236789

RESUMEN

The porous metal-organic framework UiO-66(Zr) obtained via non modulated synthesis, has revealed to be a notable heterogeneous catalyst, enabling extremely fast and very efficient desulfurization of a multicomponent model diesel and also a real diesel fuel.

7.
Artículo en Inglés | MEDLINE | ID: mdl-21240706

RESUMEN

The evaluation of benzene in different environments such as indoor (with and without tobacco smoke), a city area, countryside, gas stations and near exhaust pipes from cars running on different types of fuels was performed. The samples were analyzed using gas chromatography (GC) with flame ionization detection (FID) and tandem mass spectrometric detection (MS/MS) (to confirm the identification of benzene in the air samples). Operating conditions for the GC-MS analysis were optimized as well as the sampling and sample preparation. The results obtained in this work indicate that i) the type of fuel directly influences the benzene concentration in the air. Gasoline with additives provided the highest amount of benzene followed by unleaded gasoline and diesel; ii) the benzene concentration in the gas station was always higher than the advisable limit established by law (5 µg m⁻³) and during the unloading of gasoline the achieved concentration was 8371 µg m⁻³; iii) the data from the countryside (Taliscas) and the urban city (Matosinhos) were below 5 µg m⁻³ except 5 days after a fire on a petroleum refinery plant located near the city; iv) it was proven that in coffee shops where smoking is allowed the benzene concentration is higher (6 µg m⁻³) than in coffee shops where this is forbidden (4 µg m⁻³). This method may also be helpful for environmental analytical chemists who use GC-MS/MS for the confirmation or/and quantification of benzene.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire/análisis , Benceno/análisis , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/química , Cromatografía de Gases , Ionización de Llama , Gasolina/análisis , Portugal , Espectrometría de Masas en Tándem , Contaminación por Humo de Tabaco/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...